A Quasi-Newton Approach to Nonsmooth Convex Optimization

ثبت نشده
چکیده

We extend the well-known BFGS quasiNewton method and its limited-memory variant (LBFGS) to the optimization of nonsmooth convex objectives. This is done in a rigorous fashion by generalizing three components of BFGS to subdifferentials: The local quadratic model, the identification of a descent direction, and the Wolfe line search conditions. We apply the resulting sub(L)BFGS algorithm to L2-regularized risk minimization with binary hinge loss, and its directionfinding component to L1-regularized risk minimization with logistic loss. In both settings our generic algorithms perform comparable to or better than their counterparts in specialized state-of-the-art solvers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Quasi-Newton Approach to Nonsmooth Convex Optimization A Quasi-Newton Approach to Nonsmooth Convex Optimization

We extend the well-known BFGS quasi-Newton method and its limited-memory variant (LBFGS) to the optimization of nonsmooth convex objectives. This is done in a rigorous fashion by generalizing three components of BFGS to subdifferentials: The local quadratic model, the identification of a descent direction, and the Wolfe line search conditions. We apply the resulting subLBFGS algorithm to L2-reg...

متن کامل

Efficient evaluation of scaled proximal operators

Quadratic-support functions [Aravkin, Burke, and Pillonetto; J. Mach. Learn. Res. 14(1), 2013] constitute a parametric family of convex functions that includes a range of useful regularization terms found in applications of convex optimization. We show how an interior method can be used to efficiently compute the proximal operator of a quadratic-support function under different metrics. When th...

متن کامل

A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning

We extend the well-known BFGS quasi-Newton method and its memory-limited variant LBFGS to the optimization of nonsmooth convex objectives. This is done in a rigorous fashion by generalizing three components of BFGS to subdifferentials: the local quadratic model, the identification of a descent direction, and the Wolfe line search conditions. We prove that under some technical conditions, the re...

متن کامل

New Quasi-Newton Optimization Methods for Machine Learning

This thesis develops new quasi-Newton optimization methods that exploit the wellstructured functional form of objective functions often encountered in machine learning, while still maintaining the solid foundation of the standard BFGS quasi-Newton method. In particular, our algorithms are tailored for two categories of machine learning problems: (1) regularized risk minimization problems with c...

متن کامل

BFGS convergence to nonsmooth minimizers of convex functions

The popular BFGS quasi-Newton minimization algorithm under reasonable conditions converges globally on smooth convex functions. This result was proved by Powell in 1976: we consider its implications for functions that are not smooth. In particular, an analogous convergence result holds for functions, like the Euclidean norm, that are nonsmooth at the minimizer.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008